
-weishaupt-

manual

Notice de montage et de mise en service

Eine deutschsprachige Version dieser Anleitung ist auf Anfrage erhältlich.

1	Conseils d'utilisation	4
	1.1 Personnes concernées	4
	1.2 Symboles repris dans la notice	5
	1.3 Garantie et responsabilité	5
2	Sécurité	6
_	2.1 Utilisation conforme aux domaines d'emploi	
	2.2 Symboles se trouvant sur l'équipement et relevant de la sécurité	
	2.3 Comportement en cas de fuite de fluide frigorigène	
	2.4 Mesures de sécurité	
	2.4.1 Équipements de protection individuelle (EPI)	
	2.4.2 Fonctionnement normal	
	2.4.3 Travaux électriques	
	2.4.4 Circuit frigorifique	
	2.4.5 Transport et stockage	
	2.4.6 Travaux en toiture ou en façade	
	2.5 Mise au rebut	11
3	Description produit	12
•	3.1 Typologie	
	3.2 Type et numéro de série	
	3.3 Fonctionnement	
	3.3.1 Composants côtés eau et fluide frigorigène	
	3.3.2 Composants électriques	
	3.3.3 Fonctions de sécurité et de surveillance	
	3.4 Caractéristiques techniques	
	3.4.1 Données de certification	
	3.4.2 Caractéristiques électriques	
	3.4.3 Source de chaleur et pose	
	3.4.4 Conditions environnantes	
	3.4.5 Émissions	
	3.4.6 Puissance	
	3.4.6.1 Puissance chauffage	
	3.4.6.2 Puissance rafraîchissement	
	3.4.6.3 Pertes de charge de la pompe à chaleur	
	3.4.7 Fluide caloporteur	
	3.4.8 Courbes en mode chauffage	
	3.4.9 Courbes en mode rafraîchissement	
	3.4.10 Pression de service	
	3.4.11 Charge en fluide frigorigène	24
	3.4.12 Dimensions	24
	3.4.13 Poids	24
4	Montage	25
•	4.1 Conditions de mise en œuvre	
	4.2 Installation de la pompe à chaleur	
	4.2.1 Zone de protection	
	4.2.2 Distance minimale	
	4.2.2.1 Installation au sol	
	4.2.2.2 Installation sur un toit terrasse	

	4.2.3 Transport	34
	4.2.4 Installer la pompe à chaleur	35
5	Installation	36
	5.1 Prescriptions liées à la qualité de l'eau de chauffage	36
	5.1.1 Volume d'eau de chauffage de l'installation	
	5.1.2 Dureté de l'eau	37
	5.2 Raccordement hydraulique	38
	5.3 Raccordement condensats	40
	5.4 Raccordement électrique	42
	5.4.1 Schéma de raccordement	43
6	Mise en service	44
7	Mise hors service	45
8	Entretien	46
	8.1 Consignes d'entretien	46
	8.2 Composants	47
	8.3 Nettoyage de la pompe à chaleur	48
	8.4 Remplacer l'habillage	50
	8.5 Rinçage du dispositif de désembouage	52
	8.6 Dégazage du circuit de chauffage	52
9	Caractéristiques techniques	
	9.1 Caractéristiques des sondes	53
	9.2 Tableau de conversion unité de pression	54
	9.3 Appareils sous pression	55
10	Elaboration du projet	
	10.1 Plan de fondation	56
11	Pièces détachées	58
12	Notes	66
13	Index alphabétique	70

1 Conseils d'utilisation

1 Conseils d'utilisation

Traduction de la notice originale

Cette notice de montage et de mise en service fait partie intégrante du produit et doit toujours être conservée sur l'installation.

Avant de procéder à quelques travaux que ce soit, il importe de lire la notice de mise en service.

1.1 Personnes concernées

La notice de montage et de mise en service s'adresse à l'utilisateur et à du personnel qualifié. Elle doit être consultée par toutes les personnes qui interviennent sur l'équipement.

Les interventions sur l'équipement ne peuvent être opérées que par des professionnels disposant de la formation, des instructions et des autorisations qui s'imposent.

Conformément à la norme EN 60335-1, les directives suivantes s'appliquent à l'utilisateur de l'équipement

Cet équipement est accessible pour des enfants de plus de 8 ans ainsi que par des personnes dont les capacités physiques, sensorielles ou mentales sont altérées, voire des personnes ne disposant pas d'une expérience avérée dans l'utilisation de ce type de matériel, à la condition qu'ils soient assistés ou qu'ils aient reçu les instructions nécessaires, permettant une utilisation sécurisée du produit et des dangers résultant d'un usage inapproprié. Les enfants ne peuvent par contre en aucun cas jouer avec le produit. Les opérations de nettoyage et d'entretien ne peuvent pas être effectuées par des enfants sans une surveillance appropriée.

1 Conseils d'utilisation

1.2 Symboles repris dans la notice

DANGER	Danger potentiel avec risques aggravés. Un défaut de prise en compte de ce danger peut avoir des conséquences graves, voire même entraî- ner la mort.
AVERTISSEMENT	Danger potentiel avec risques moyens. Un défaut de prise en compte de ce danger peut entraîner des blessures graves, voire même entraîner la mort.
ATTENTION	Danger potentiel avec risques faibles. Un défaut de prise en compte de ce danger peut entraîner des blessures corporelles.
REMARQUE	Un défaut de prise en compte de la remarque peut entraîner des dégradations matérielles ou avoir des conséquences sur l'environnement.
ů	Information importante
•	Ce symbole représente les opérations devant être effectuées immédiatement.
√	Ce symbole correspond au résultat après une opération.
•	Énumération.
	Plage de valeurs ou points de suspension
XX	Espace libre pour chiffres, par ex. index de la langue pour N° d'impression.
Police affichage	Police du texte, apparaissant à l'affichage.

1.3 Garantie et responsabilité

Des demandes en garantie et responsabilité lors de dommages corporels ou de dégâts matériels ne sont pas couvertes lorsqu'elles se rapportent à l'une ou plusieurs des causes ci-après :

- mauvaise utilisation du produit
- non-respect de la notice d'utilisation
- fonctionnement des matériels avec des sécurités défectueuses ou des protections non conformes
- dommages survenus par maintien en utilisation des matériels alors qu'un défaut est présent
- montage, mise en service, utilisation et entretien du produit non conformes
- réparations qui n'ont pas été effectuées dans les règles
- utilisation de pièces qui ne sont pas des pièces d'origine Weishaupt
- mauvaise manipulation
- modifications effectuées sur le produit par l'utilisateur
- montage d'éléments complémentaires qui n'ont pas été testés en liaison avec l'équipement
- fluides caloporteurs non agréés
- défauts dans la réalisation des alimentations

2 Sécurité

2.1 Utilisation conforme aux domaines d'emploi

La pompe à chaleur Aeroblock® est exclusivement adaptée pour :

- le réchauffage et le rafraîchissement de l'eau de chauffage selon la VDI 2035 (recommandation allemande)
- un fonctionnement mono-énergétique et bivalent

L'équipement ne peut être mis en oeuvre qu'en liaison avec un régulateur Weishaupt. Les associations suivantes sont possibles :

- WAB 14-B-RMD-A avec régulateur de pompe à chaleur WAB
- WAB 14-B-RMD-A avec préparateur multifonction WKS 300/100 LE / Unit-E / Bloc / ... #5

Les caractéristiques techniques doivent être respectées [chap. 3.4].

Cet équipement ne peut être implanté que dans l'environnement extérieur.

La pompe à chaleur n'est adaptée à un fonctionnement continu (par ex. dans le cadre du séchage d'une dalle), que lorsque pendant cette phase de fonctionnement continu, une température retour minimale pour l'eau de chauffage de 18 °C peut être assurée. A défaut, un dégivrage correct de l'évaporateur ne pourrait pas être garanti.

Weishaupt conseille au titre d'un processus de séchage de dalle de mettre en oeuvre un second générateur externe tiers.

Cet équipement est conçu pour être installé dans l'habitat individuel. Dans le cadre d'une application industrielle, il peut s'avérer nécessaire de prendre des mesures complémentaires contre les perturbations électromagnétiques.

Une utilisation non conforme peut :

- avoir des conséquences graves pouvant porter atteinte à la vie de l'utilisateur ou à celle de tiers
- entraîner une dégradation des matériels ou de leur environnement

2.2 Symboles se trouvant sur l'équipement et relevant de la sécurité

Sym- bole	Description	Position
\wedge	Mise en garde en présence d'une tension électrique	Boîtier électronique
14		Inverter
		Compresseur
	Composants sensibles à l'électricité statique (ESD)	Boîtier électronique
		Inverter
$\overline{\Lambda}$	Mise en garde contre toute matière inflam-	Boîtier électronique
	mable	Compresseur
		Déshydrateur
		Sondes
		Dégazeur
		Vanne Schrader
S	Danger lié au courant électrique	Inverter
	Respecter les consignes de la notice	Inverter
		Compresseur
	Utiliser des lunettes de protection	Compresseur
	Formation indispensable	Compresseur

2.3 Comportement en cas de fuite de fluide frigorigène

La pompe à chaleur est chargée en fluide frigorigène inflammable.

Le fluide frigorigène est inodore et s'amalgame au niveau du sol suite à une fuite. L'inhalation du fluide peut conduire à l'étouffement.

Éviter tout feu et toute étincelle, par exemple :

- Ne pas éteindre ou allumer la lumière
- Ne pas faire fonctionner d'appareil électrique
- Ne pas utiliser de téléphone portable
- ► Couper l'alimentation électrique de la machine via les disjoncteurs externes.
- ► Prévenir les habitants.
- ▶ Prévenir un technicien froid ou le service après-vente Weishaupt.
- ► Informer l'utilisateur.
- ► Vérifier que personne ne soit mis en danger, aussi bien à l'extérieur, que dans des locaux ou des bâtiments adjacents.

Si des dégradations interviennent lors du transport ou du stockage :

- ▶ Déplacer immédiatement la pompe à chaleur vers un endroit sécurisé au niveau de l'environnement extérieur.
- ► S'assurer par ailleurs qu'aucune source d'ignition ni de flamme ouverte ne se trouve à moins de 6 mètres de la pompe à chaleur.

2.4 Mesures de sécurité

Tout défaut pouvant porter atteinte à la sécurité du matériel et/ou des personnes doit impérativement être supprimé.

Les composants soumis à une usure plus rapide ou ayant une durée de vie plus courte ou encore dont la préconisation de durée de vie arrive à échéance avant le prochain entretien, doivent être remplacés à titre préventif [chap. 8.2].

2.4.1 Équipements de protection individuelle (EPI)

Lors des travaux, utiliser les équipements de protection individuelle.

Les équipements de protection individuelle protègent l'intervenant lors des travaux qu'il réalise sur l'équipement.

Il est impératif de porter des chaussures de sécurité en cas d'intervention sur l'équipement et ce quelle que soit la nature des travaux.

L'ensemble des autres équipements de sécurité à utiliser impérativement font l'objet d'une signalétique dans les chapitres correspondants.

Sym- bole	Description	Information
	Utiliser des gants de protection	Porter des gants de protection adaptés.
	Utiliser des lunettes de protection	► Porter des lunettes de protection parfaitement étanches, conformes à la norme EN 166.
	Utiliser un harnais de sécurité	Porter un équipement de protection approprié contre les risques de chutes.

2.4.2 Fonctionnement normal

- S'assurer que les plaques signalétiques soient bien lisibles et à défaut, les remplacer.
- Veiller à ce que les travaux de maintenance soient réalisés selon le mode opérationnel décrit et dans les délais impartis.
- D'une manière générale les produits ne doivent fonctionner que lorsque le capot est fermé
- Ne pas nettoyer l'équipement au jet d'eau.
- L'habillage ne peut être ouvert que par un professionnel qualifié.

2.4.3 Travaux électriques

Lors de travaux réalisés à proximité d'appareils sous tension :

- Respecter les prescriptions relatives à la prévention des accidents (comme par ex. : la DGUV 3 pour l'Allemagne) ainsi que toute réglementation en vigueur au plan local comme par ex. en France : la NF C15-100.
- Utiliser l'outillage adéquat prescrit par la norme EN IEC 60900

Cet équipement contient des composants pouvant être endommagés par décharge électrostatique.

Lors de travaux sur des platines et des contacts :

- Ne pas toucher la platine et les contacts
- Veiller à respecter les mesures de protection correspondantes

2.4.4 Circuit frigorifique

- Informer l'utilisateur de l'installation avant le début des travaux.
- Seul un personnel technique qualifié peut intervenir sur le circuit frigorifique personnel disposant :
 - d'une attestation d'aptitude
 - d'une formation d'aptitude à la manipulation de fluide frigorigène facilement inflammable classé 3
- Avant d'intervenir sur le circuit frigorifique, il importe de contrôler l'absence d'éventuelles fuites de fluide frigorigène sur la pompe à chaleur avec un dispositif de détection de fuite de gaz approprié.
- Couper l'alimentation électrique de la pompe à chaleur via l'interrupteur général.
- Les travaux au niveau du circuit frigorifique, ne peuvent intervenir que sur un équipement disposant d'une mise à la terre via un équilibrage des potentiels.
 Cela permet d'éviter les décharges électrostatiques.
- Les travaux au niveau du circuit frigorifique, ne peuvent intervenir que si les distances minimales prescrites sont respectées [chap. 4.2.2].
- Seuls un outillage frigorifique spécifique et des instruments de mesure dédiés peuvent être utilisés.
- Tenir un extincteur à poudre à proximité.
- Effectuer un contrôle d'étanchéité à l'aide d'un détecteur de fuite après chaque entretien et suppression de défaut.

Réparation du circuit frigorifique

Lors d'une réparation du circuit frigorifique veiller de façon complémentaire à :

- Informer l'ensemble du personnel intervenant ainsi que toute personne se situant à proximité, de la nature des travaux entrepris.
- Vérifier avant le début des travaux si les zones situées autour du circuit frigorifique peuvent présenter des sources d'inflammation.
- Eloigner les sources d'inflammation présentes.
- Contrôler la présence de la signalétique de mise en garde.
- Vous assurer que le lieu d'intervention se situe à l'extérieur et qu'il est suffisamment ventilé.
- Assurer une ventilation permanent sur l'ensemble de la durée des travaux.
- Contrôler l'environnement à proximité du circuit frigorifique dans son ensemble, et ce avant et pendant les travaux, à l'aide d'un détecteur de fuite spécifiquement adapté au fluide frigorigène inflammable.

2.4.5 Transport et stockage

La pompe à chaleur intègre du fluide frigorigène inflammable dans un circuit frigorifique parfaitement hermétique et étanche. Un dommage peut le cas échéant conduire à une fuite de fluide frigorigène. Lorsqu'un dommage survient, la pompe à chaleur doit être immédiatement déplacée vers un endroit sécurisé au niveau de l'environnement extérieur. Le fluide frigorigène pourra ainsi s'échapper sans danger ou être récupéré et éliminé par un personnel qualifié [chap. 2.3].

Transport

Weishaupt préconise d'emporter dans les véhicules, un détecteur de fuite spécifiquement adapté au fluide frigorigène, afin de pouvoir contrôler à tout moment la présence d'éventuelles fuites.

- Éviter toute source d'ignition et toute flamme (comme par ex. : appareils électriques, surfaces chaudes, etc ...).
- Respecter les directives européennes régissant le transport routier de marchandises dangereuses (Directive ADR) ainsi que toute réglementation en vigueur au plan local - voir à cet effet l'arrêté TMD.
- Les matériels ne peuvent être transportés que dans leur emballage d'origine.

Si le transport doit s'opérer sans l'emballage d'origine, il est impératif de retirer préalablement la charge de fluide contenue dans l'appareil en respectant les règles de l'art.

Stockage

- Eviter toute source d'ignition et toute flamme.
- Respecter le volume minimal du local de stockage.
- Mises en garde au niveau de l'espace de stockage (comme par ex. : "Interdiction de fumer"), en respectant dans ce cadre la réglementation spécifique en vigueur au plan local.
- Vérifier et le cas échéant adapter le plan de prévention et d'intervention incendie.

Dans le cadre d'une présentation produit ou d'une exposition, il est impératif de retirer préalablement la charge de fluide contenue dans l'appareil en respectant les règles de l'art.

2.4.6 Travaux en toiture ou en façade

- Respecter les règles de sécurité locales en vigueur en matière de travaux en hauteur.
- Utiliser impérativement les équipements de sécurité destinés à se prémunir contre les chutes.
- Prendre les mesures de sécurité destinées à la protection contre les chutes d'objets.

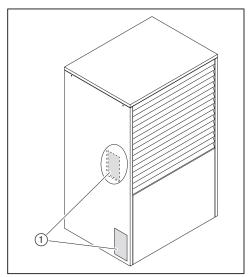
2.5 Mise au rebut

Les matériels et composants employés doivent être éliminés conformément à la législation. Il importe de tenir compte en outre de la réglementation spécifique en vigueur au plan local.

Assurer l'élimination du fluide et de l'huile frigorigène conformément à la réglementation, tout en tenant compte des données suivantes :

- l'huile frigorigène contient du fluide frigorigène en solution
- le fluide frigorigène dissous peut dégazer
- Les composants du circuit frigorifique doivent :
 - être rincés à l'azote et bouchonnés
 - être marqués de façon visible pour avertir des dangers liés au dégazage de fluide frigorigène

3 Description produit


3.1 Typologie

WAB 14-B-RMD-A

WAB	Gamme: Weishaupt Aeroblock®
14	Taille: 14
В	Version
R	Spécificité : réversible
M	Exécution : modulant
D	Exécution: triphasée
A	Installation: extérieur

3.2 Type et numéro de série

Le type et le numéro de série se trouvant sur la plaque signalétique constituent une identification claire du produit. Ils sont indispensables pour les Services Techniques Weishaupt.

1 Plaque signalétique

3.3 Fonctionnement

La pompe à chaleur prélève des calories dans l'air extérieur. L'énergie prélevée est transférée au circuit de chauffage via le circuit frigorifique.

Grâce à un processus d'inversion de cycle, le mode rafraîchissement est possible.

Ventilateur

L'air extérieur est aspiré via un ventilateur et est conduit à l'évaporateur.

Evaporateur

L'évaporateur (échangeur) extrait les calories contenues dans l'air aspiré pour transférer l'énergie au fluide frigorigène.

Compresseur

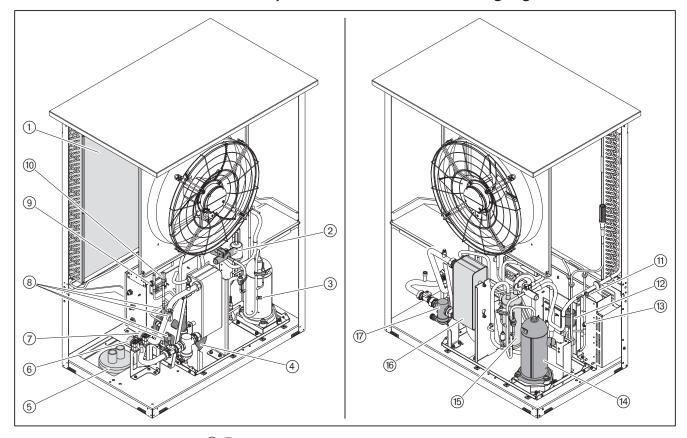
Le compresseur aspire le fluide frigorigène depuis l'évaporateur et en élève les niveaux de pression et de température.

Condenseur

Le fluide frigorigène libère l'énergie récupérée à destination de l'eau de chauffage via le condenseur.

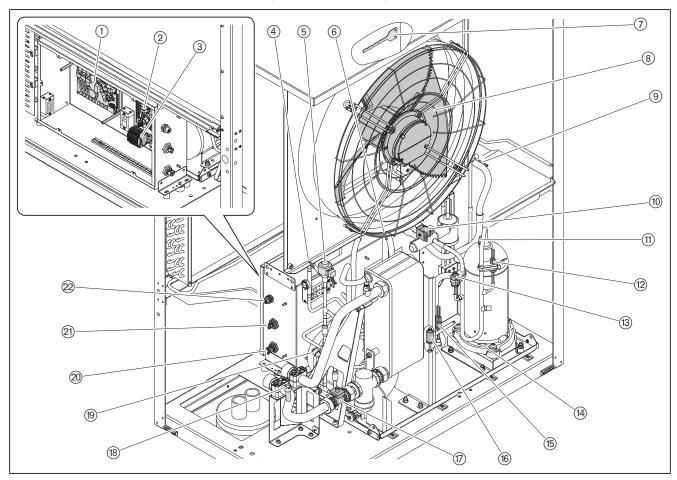
Détendeur

Le détendeur opère un abaissement de la pression et de la température. Ainsi, le fluide frigorigène peut à nouveau récupérer des calories dans l'évaporateur.


Débitmètre

Le débitmètre mesure le débit d'eau et assure une surveillance du débit minimum dans le circuit de chauffage.

Désemboueur


Le désemboueur assure une filtration de l'eau de chauffage et protège ainsi le condenseur.

3.3.1 Composants côtés eau et fluide frigorigène

- 1 Evaporateur
- 2 Vanne quatre voies
- ③ Vanne Schrader 1
- 4 Collecteur de liquide
- (5) Conduites isolées
- (6) Raccordement retour
- 7 Raccordement départ
- 8 Clapets anti-retour (4 pièces)
- 9 Verre de visée
- 10) Détendeur
- 11) Vanne Schrader 2
- 12) Filtre déshydrateur
- (3) Vanne Schrader 3
- (4) Compresseur
- 15 Bouteille anti-coup de liquide
- (16) Condenseur
- (17) Désemboueur

3.3.2 Composants électriques

- 1 Inverter
- (2) Platine SEC-Mono
- 3 Bornier
- 4 Sonde fluide frigorigène amont détendeur (T5)
- (5) Bobine détendeur
- 6 Sonde d'aspiration entrée compresseur (T4)
- 7 Sonde d'aspiration d'air (T2)
- 8 Ventilateur
- 9 Sonde échangeur en sortie d'évaporateur (T3)
- 10 Bobine vanne 4 voies
- 11) Sonde de température gaz chaud (DT)
- 2 Pressostat HP
- (3) Capteur haute pression
- (4) Sonde de carter d'huile (T1)
- (15) Pressostat basse pression
- (6) Capteur basse pression
- 7 Débitmètre (B10)
- (18) Sonde de retour (B9)
- (9) Sonde de départ pompe à chaleur (B4)
- 20 Raccordement électrique compresseur
- 21) Raccordement électrique commande
- Raccordement électrique Modbus

3.3.3 Fonctions de sécurité et de surveillance

Pressostat HP

Lorsque la pression dans le circuit frigorifique dépasse 32 bar, le compresseur se coupe (W 15 et W 111). Dès lors que la pression dans le circuit frigorifique côté haute pression chute à < 24 bar, le compresseur est à nouveau libéré.

Pressostat basse pression

Lorsque la pression dans le circuit frigorifique passe sous la valeur de 0,2 bar, le compresseur se coupe (W 15 et W 111). Dès lors que la pression dans le circuit frigorifique côté haute pression repasse à > 1,4 bar, le compresseur est à nouveau libéré.

Échangeur à double paroi

L'échangeur à double paroi assure une parfaite séparation du fluide frigorigène par rapport à l'eau de chauffage. Ainsi, en cas de fuite, le fluide frigorigène ne peut pas pénétrer dans le circuit de chauffage.

3.4 Caractéristiques techniques

3.4.1 Données de certification

KEYMARK (DIN CERTCO) |en cours

Normes fondamentales EN 12102-1:2017

> EN 14511-1: 2022 EN 14511-2: 2022 EN 14511-3: 2022 EN 14511-4: 2022 EN 14825: 2018

Pour toutes les autres normes, se référer à la décla-

ration de conformité UE.

3.4.2 Caractéristiques électriques

Indice de protection	IP54	
Boîtier de commande		
Tension réseau / fréquence réseau	230 V / 50 Hz	
Puissance absorbée	maxi 900 W	
	1.0.144	_

Tension reseau / frequence reseau	200 1 7 00 1 12
Puissance absorbée	maxi 900 W
Puissance absorbée en standby	12 W
Protection externe	maxi B 13 A ⁽²
RCD ⁽¹⁾ externe	Type A
(1	

⁽¹ Disjoncteur de protection à courant de défaut

Compresseur

Tension réseau / fréquence réseau	400 V / 50 Hz
Puissance absorbée	maxi 5250 W
Puissance absorbée en standby	7 W
Courant de démarrage	maxi 8 A
Protection externe	тахі В 13 А ⁽³
RCD ⁽¹ (optionnel) ⁽²	Sensibilité tous courants type B

⁽¹ Disjoncteur de protection à courant de défaut.

3.4.3 Source de chaleur et pose

Source de chaleur	Flux d'air
Installation	Extérieur

⁽² Protection maximale autorisée. Un niveau de protection inférieur peut le cas échéant être mis en oeuvre. Il importe de tenir compte de la puissance maximale absorbée en liaison avec les spécificités de l'installation.

⁽² Respecter les prescriptions locales.

⁽³ Protection maximale autorisée. Un niveau de protection inférieur peut le cas échéant être mis en oeuvre. Il importe de tenir compte de la puissance maximale absorbée en liaison avec les spécificités de l'installation.

3.4.4 Conditions environnantes

Température en fonctionnement - Mode chauffage	−22 +35 °C
Température en fonctionnement - Mode rafraîchissement	+20 +45 °C
Température lors du transport et du stockage	−25 +60 °C
Humidité relative pour le transport/le stockage	maxi 80 %, pour éviter tout excès de condensation
Hauteur d'installation	maxi 2000 m ⁽¹

⁽¹ Pour une altitude supérieure, contacter votre interlocuteur Weishaupt.

3.4.5 Émissions

Niveau sonore

Valeurs d'émission à 2 chiffres

Niveau de puissance acoustique Lwa (re 1 pW) mesuré

pour des conditions normalisées à A7 / W55

maximal

Tolérance Kwa

1 dB(A)⁽¹⁾

58 dB(A)⁽¹⁾

3 dB(A)

Le niveau de puissance sonore + la tolérance, représente la limite supérieure de la valeur pouvant être mesurée.

3.4.6 Puissance

Débit volumétrique nominal au conden- seur	A7 / W35 (5 K) ⁽¹	0,75 m³/h
Débit volumétrique minimum	Mode chauffage	0,70 m ³ /h
Débit volumétrique maximal	Mode chauffage	2,37 m ³ /h
Débit volumétrique minimal	Mode rafraîchisse- ment	1,30 m ³ /h
Débit volumétrique maximal	Mode rafraîchisse- ment	1,40 m ³ /h
Débit volumétrique minimal	Mode dégivrage	1,30 m ³ /h
Plage de puissance en chauffage	A2 / W35	4,10 11,19 kW

⁽¹ Pour des conditions normalisées et un DeltaT selon EN 14511-2.

3.4.6.1 Puissance chauffage

Caractéristiques de puissance conformément à la norme EN 14511-3 : 2022.

Température départ de l'eau de chauffage	+20 +70 ℃
Limite d'exploitation T° de l'air - Mode chauffage	-22 +35 °C

Conditions de fonctionnement normalisées à A2 / W35

Puissance thermique	3,81 kW
Coefficient de performance (COP)	4,15

⁽¹ Déterminé selon ISO 9614-2.

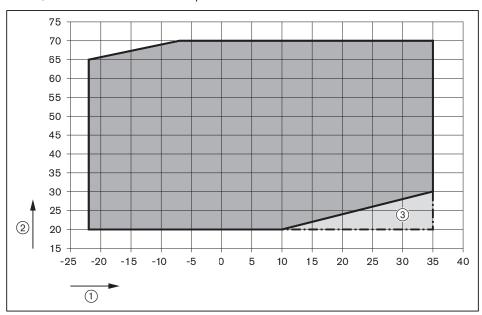
Conditions normalisées à A7 / W35 et DeltaT 5 K

Puissance thermique	4,34 kW
Coefficient de performance (COP)	5,18

Conditions normalisées à A7 / W55 et DeltaT 8 K

Puissance thermique	4,29 kW
Coefficient de performance (COP)	3,14

Conditions de fonctionnement normalisées à A-7 / W35


Puissance thermique	8,69 kW
Coefficient de performance (COP)	3,05

Conditions de fonctionnement normalisées à A-7 / W55

Puissance thermique	8,31 kW
Coefficient de performance (COP)	2,25

Plage de fonctionnement en chauffage

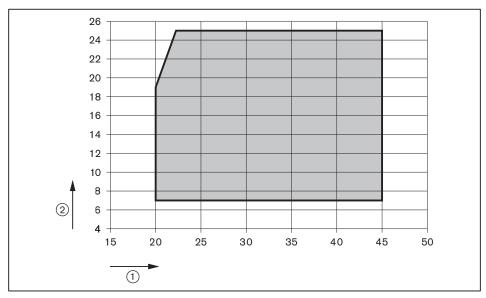
Un fonctionnement dans la plage restreinte ③ n'est possible que durant 30 minutes. Après ce laps de temps, la pompe à chaleur se coupe et redémarre après une phase Anti courts-cycles. Un fonctionnement continu dans la plage restreinte, affecte la durée de vie du produit.

- 1 Température d'aspiration d'air [°C]
- 2 Température de départ [°C]
- 3 Plage de fonctionnement restreinte

3.4.6.2 Puissance rafraîchissement

Caractéristiques de puissance conformément à la norme EN 14511-3 : 2022.

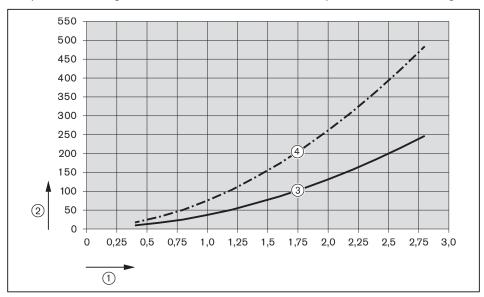
Température de départ de l'eau de rafraîchissement	+7 +25 °C
Limite d'exploitation T° de l'air - Mode rafraîchissement	+20 +45 °C


Conditions normalisées à A35 / W7 et DeltaT 5 K

Puissance de rafraîchissement	5,94 kW
Coefficient de performance (EER)	3,23

Conditions normalisées à A35 / W18 et DeltaT 5 K

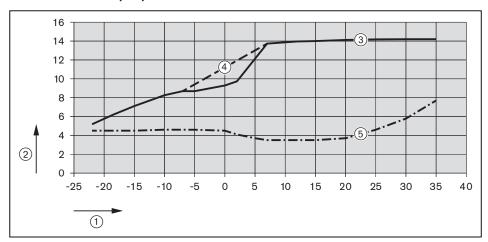
Puissance de rafraîchissement	8,70 kW
Coefficient de performance (EER)	4,46


Plage de fonctionnement en rafraîchissement

- 1) Température d'aspiration d'air [°C]
- ② Température de départ [°C]

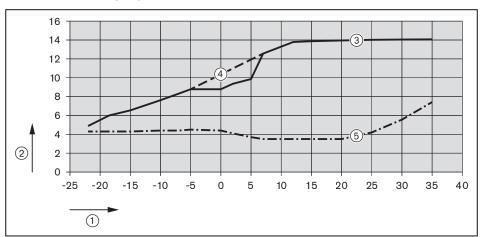
3.4.6.3 Pertes de charge de la pompe à chaleur

Les pertes de charge ont été déterminées à l'aide du dispositif de désembouage.


- ① Débit [m³/h]
- ② Pertes de charge [mbar]
- ③ WAB 14
- 4 WAB 14 avec 40 m de conduites isolées WHZ-FL 40

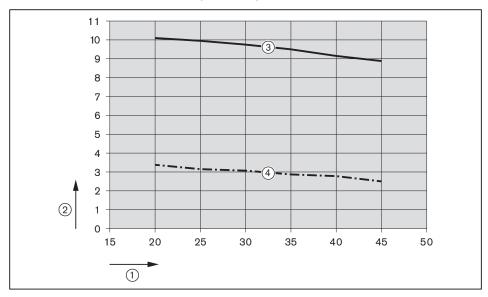
3.4.7 Fluide caloporteur

Eau de chauffage selon VDI 2035 (Directive allemande)

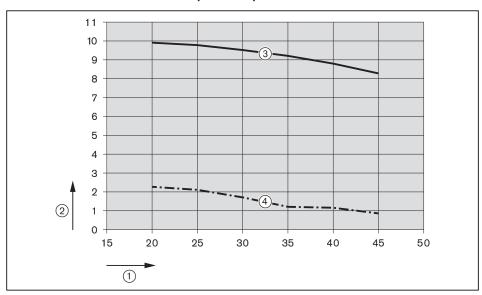

3.4.8 Courbes en mode chauffage

Puissance thermique pour une T° de sortie d'eau de 35 °C

- 1 Température d'entrée d'air [°C]
- 2 Puissance thermique [kW]
- 3 Fréquence maximale du compresseur
- 4) Fréquence maximale du compresseur sans dégivrage
- 5) Fréquence minimale du compresseur


Puissance thermique pour une T° de sortie d'eau de 55 °C

- 1) Température d'entrée d'air [°C]
- 2 Puissance thermique [kW]
- 3 Fréquence maximale du compresseur
- (4) Fréquence maximale du compresseur sans dégivrage
- 5 Fréquence minimale du compresseur


3.4.9 Courbes en mode rafraîchissement

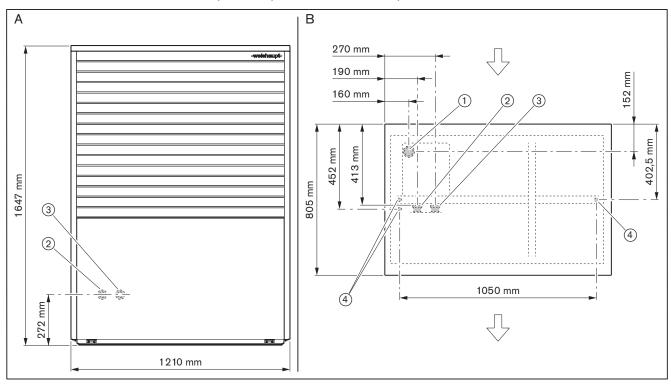
Puissance de rafraîchissement pour température de sortie d'eau de 18 °C

- 1) Température d'entrée d'air [°C]
- 2 Puissance de rafraîchissement [kW]
- 3 Fréquence maximale du compresseur
- 4 Fréquence minimale du compresseur

Puissance de rafraîchissement pour température de sortie d'eau de 7 °C

- 1 Température d'entrée d'air [°C]
- 2 Puissance de rafraîchissement [kW]
- 3 Fréquence maximale du compresseur
- 4) Fréquence minimale du compresseur

3.4.10 Pression de service


Fluide frigorigène côté haute pression	maxi 32 bar
Fluide frigorigène côté basse pression	maxi 21 bar
Eau de chauffage	maxi 3 bar

3.4.11 Charge en fluide frigorigène

Fluide frigorigène R290	1,8 kg
Potentiel de réchauffement global (PRG)	0,02
Équivalent CO2	0,000036 t
Volume d'eau de chauffage du condenseur	2,13 litres

3.4.12 Dimensions

Respecter le plan de fondation [chap. 10.1].

- A Vue de face
- B Vue depuis le haut
- ① Evacuation des condensats Ø 40 mm
- ② Retour G 1"1/4
- 3 Départ G 1"1/4
- 4 Point de fixation 14 mm, par ex. pour goujon d'ancrage à frapper

3.4.13 Poids

Poids à vide env. 260 kg

4 Montage

4.1 Conditions de mise en œuvre

La réglementation locale et les règles de construction sont à respecter scrupuleusement lors de l'installation de la pompe à chaleur.

Lieu d'installation

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Une installation inappropriée peut entraîner des fuites de fluide frigorigène et un risque d'explosion.

► Respecter scrupuleusement les conditions d'installation.

Risques d'étouffement en cas de fuite de fluide frigorigène

Du fluide frigorigène s'amalgame au niveau du sol suite à une fuite. L'inhalation du fluide peut conduire à l'étouffement.

- ► Veiller à ce que le flux d'air soit suffisant :
 - Eviter l'installation de la machine dans des cavités ou des cours intérieures
 - Ne pas installer la machine sur un toit plat avec une structure périphérique (ex. acrotère) de plus de 30 cm de haut.

Dégradation de la pompe à chaleur suite à une prise en glace

Lorsque le débit d'air est bloqué aussi bien côté aspiration que côté refoulement (par exemple par des amas de neige ou par l'invasion des végétaux) une prise en glace de la pompe à chaleur peut survenir. La pompe à chaleur peut s'en trouver endommagée.

- ▶ Dans les régions soumises à de fortes précipitations neigeuses, il importe de prévoir une pose surélevée et/ou protégée des amas de neige.
- L'absence de végétaux à proximité de l'aspiration d'air doit être garantie.

Dégradation de la pompe à chaleur suite à des recirculations d'air

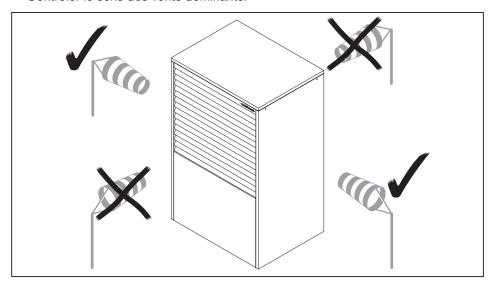
Les cavités ou les cours intérieures favorisent l'accumulation d'air refroidi pouvant être réaspiré par la pompe à chaleur. Ce type de situations peut conduire à des recirculations d'air. La pompe à chaleur peut s'en trouver endommagée.

- ▶ Il convient de veiller à la bonne évacuation de l'air refoulé :
 - Éviter l'installation de la machine dans des cavités ou des cours intérieures
 - Éviter d'orienter le refoulement d'air en direction d'une pente ou d'un obstacle

Choisir un lieu d'implantation respectant les prescriptions d'installation des conduites de liaisons hydrauliques [chap. 5.2].

Ne pas installer la machine à proximité d'une fenêtre ou d'une porte. Ne jamais orienter le refoulement d'air en direction d'une habitation voisine.

Les émissions sonores peuvent augmenter par réflexion contre un mur ou une paroi. Une installation en coin de bâtiment ou dans des niches agit en amplificateur de bruit.


▶ Il convient d'installer la pompe à chaleur sur une surface libre de tout obstacle.

Il convient de se conformer aux prescriptions locales en matière d'émissions sonores [chap. 3.4.5].

Respecter par ex. les distances réglementaires par rapport aux chambres à coucher, aux terrasses, etc...

Dans les zones soumises aux vents dominants, il convient d'orienter la machine de façon à ce que les vents ne soufflent pas en direction du ventilateur.

► Contrôler le sens des vents dominants.

Corrosion liée à une salinité importante de l'air

A proximité du littoral, la salinité importante de l'air peut conduire à des phénomènes de corrosion. A partir d'un éloignement supérieur à 12 km, l'installation de la pompe à chaleur est sans risque.

- ▶ Respecter l'éloignement préconisé par rapport au bord de mer.
- Avant le montage, s'assurer :
 - de l'adéquation des équipements inhérents à la sécurité mis en oeuvre dans le cadre de travaux en toiture ou en façade [chap. 2.4.6]
 - de la bonne détermination du parcours des conduites de raccordement
 - de la capacité de la surface de pose à résister à la charge liée à la mise en oeuvre de la pompe à chaleur [chap. 3.4.13]
 - de la présence d'un socle d'au-moins 15 cm de haut pour l'implantation de la machine, via par ex. :
 - une fondation [chap. 10.1]
 - un socle de montage (accessoire)
 - de l'absence d'obstacle pour une bonne évacuation hors-gel des condensats [chap. 10.1]
 - que les condensats ne sont pas redirigés vers l'intérieur du bâtiment [chap. 5.3]
 - que les cotes d'écartement sont respectées [chap. 4.2.2]
 - que la zone de protection est respectée [chap. 4.2.1]
 - que la place disponible permet également la mise en œuvre des raccordements hydrauliques
 - de l'accessibilité de la machine aux fins d'entretien

4.2 Installation de la pompe à chaleur

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Des travaux mal réalisés peuvent entraîner des fuites de fluide frigorigène et un risque d'explosion.

▶ Ne pas endommager le circuit frigorifique.

Risques d'étouffement en cas de fuite de fluide frigorigène

Du fluide frigorigène s'amalgame au niveau du sol suite à une fuite. L'inhalation du fluide peut conduire à l'étouffement. Le contact avec la peau peut entraîner des gelures.

► Ne pas endommager le circuit frigorifique.

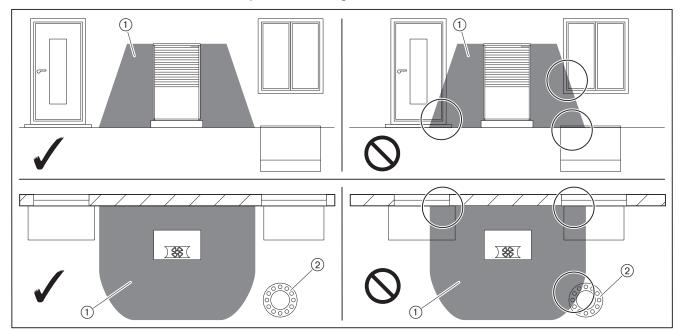
D'une manière générale, il importe de se conformer aux prescriptions de la Directive Neige et Vent EN 1991-1-3 et EN 1991-1-4 ainsi qu'aux directives nationales ou locales en vigueur ; à cet effet, selon la configuration du bâtiment, il peut être nécessaire de sécuriser l'installation.

La pompe à chaleur doit surplomber d'au minimum 15 cm la surface du sol et être installée de telle sorte que l'aspiration d'air soit protégée durablement des amas de neige.

Weishaupt préconise la réalisation d'une fondation [chap. 10.1].

Weishaupt préconise une implantation au sol, au niveau d'un emplacement dégagé [chap. 4.2.2.1].

4.2.1 Zone de protection


Le respect des zones de protection prescrites relève pendant toute la durée du fonctionnement de l'équipement de la responsabilité de l'intervenant.

Le fluide frigorigène R290 est facilement inflammable. C'est pourquoi, il ne peut y avoir dans la zone de protection délimitée ① aucune source d'ignition, qu'elle soit présente sur une courte durée ou de façon prolongée. Les sources d'ignition possibles sont par exemple :

- un foyer ouvert
- une installation électrique
- des prises de courant
- des lampes
- des interrupteurs
- un coffret électrique
- de l'outillage susceptible de produire des étincelles
- des matériels pouvant présenter une température élevée

En cas de fuite, il importe de s'assurer que le fluide frigorigène ne peut pas s'introduire à l'intérieur du bâtiment. C'est la raison pour laquelle la zone de protection ① ne peut comporter aucun ouvrant. Les ouvrants sont par ex. :

- une fenêtre, une fenêtre de toit
- des portes
- des puits de lumière, des sauts de loup
- des orifices de ventilation, des chatières en toiture
- des puits pour pompes de puits ou d'évacuation des eaux usées
- des déversements à destination des égouts
- des gouttières
- un dispositif de drainage en toiture

- ✓ autorisé
- non autorisé
- 1 Zone de protection
- 2 Cotes conduit de cheminée

4.2.2 Distance minimale

Risques de blessures en cas de formation de glace

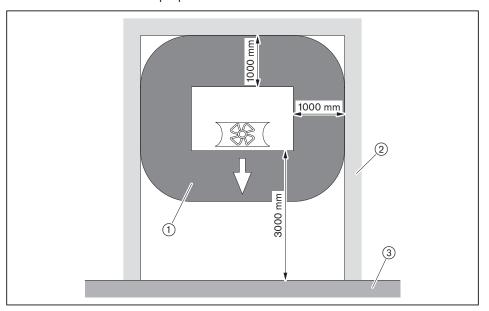
L'air refroidi par la pompe à chaleur peut conduire à des phénomènes de gel côté refoulement (par ex. sur les trottoirs, au niveau des gouttières, etc...) et à des abaissements de température dans les locaux adjacents chauffés.

- ▶ Ne pas orienter le refoulement de la machine en direction d'un mur, d'un passage, d'une route ou d'une gouttière.
- ▶ Respecter les distances minimales.

Dégradation de la pompe à chaleur en cas de non respect des distances minimales

Une recirculation d'air côté refoulement peut conduire à des défauts.

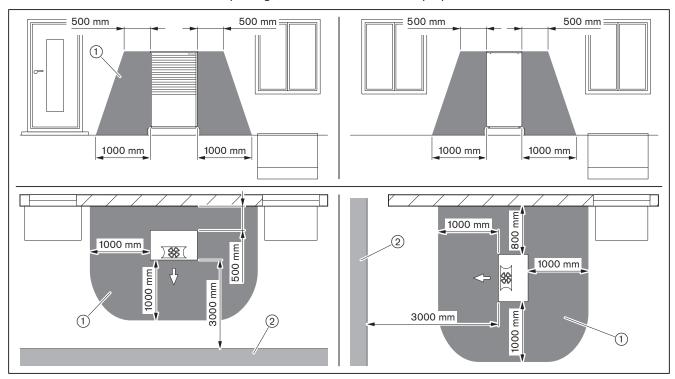
La prise en glace de la pompe à chaleur peut conduire à sa détérioration.


- Ne pas ériger/stocker des éléments pouvant constituer un obstacle, aussi bien côté aspiration que côté refoulement d'air.
- Respecter les distances minimales.

4.2.2.1 Installation au sol

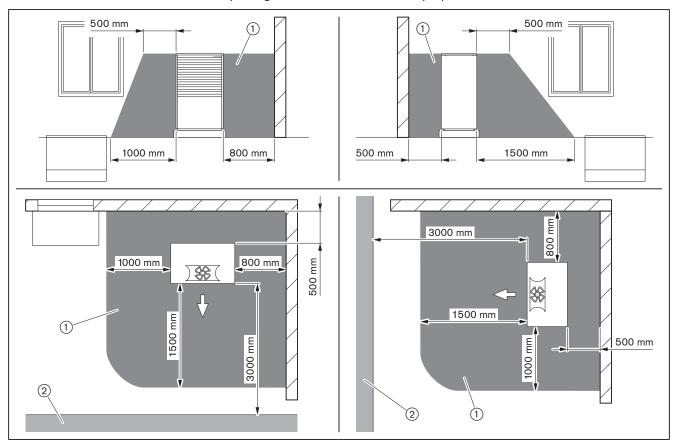
Implantation au niveau d'un emplacement dégagé

Weishaupt préconise une implantation au niveau d'un emplacement dégagé.


- ▶ Respecter la zone de protection (1) délimitée [chap. 4.2.1].
- Il est impératif de respecter les distances minimales par rapport à un passage, une rue et les limites de propriétés voisines.

- 1) Zone de protection
- (2) Passage, rue
- 3 Passage, rue, limite de propriété voisine

Implantation à proximité d'un bâtiment


- ▶ Respecter la zone de protection (1) délimitée [chap. 4.2.1].
- ▶ Il est impératif de respecter les distances minimales par rapport à des bâtiments, un passage, une rue et les limites de propriétés voisines.

- 1 Zone de protection
- 2 Passage, rue, limite de propriété voisine

Installation dans un angle

- ► Respecter la zone de protection ① délimitée [chap. 4.2.1].
- ▶ Il est impératif de respecter les distances minimales par rapport à des bâtiments, un passage, une rue et les limites de propriétés voisines.

- (1) Zone de protection
- 2 Passage, rue, limite de propriété voisine

Installation à proximité de garages, de parkings, d'accès souterrains à des garages ou des places de parking

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Un choc (une collision) peut conduire à des fuites de fluide frigorigène respectivement à une explosion.

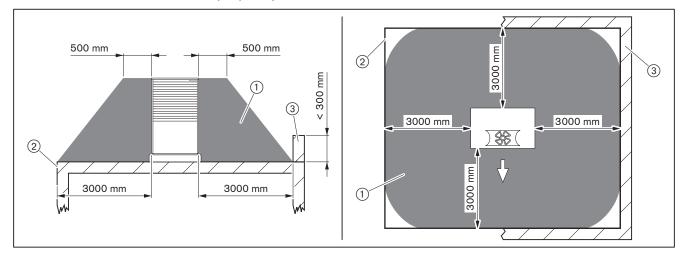
Une protection contre les chocs adaptée à la vitesse maximale autorisée (fournie par le client) est nécessaire.

► La protection contre les chocs doit être installée en dehors de la zone de protection.

Il importe de respecter les prescriptions et directives locales en termes d'installation de pompes à chaleur à proximité de garages et de parkings, comme par ex. GaStellV, GAStplVO, BetrSichV.

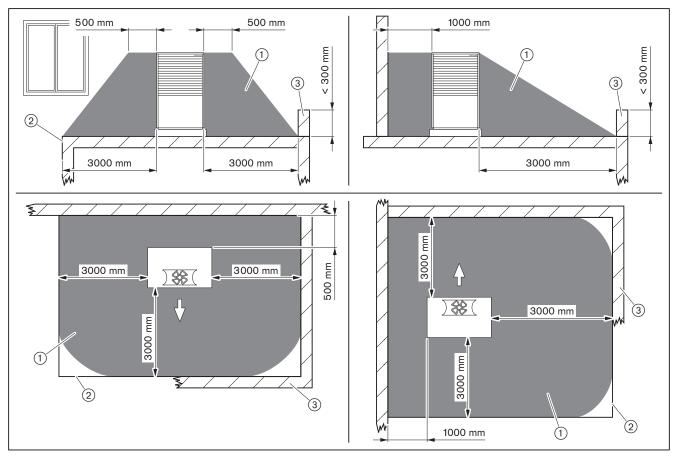
- ▶ Respecter la zone de protection [chap. 4.2.1].
- ▶ Respecter les distances minimales pour les différents modes d'implantation.
- ▶ Monter des protections contre les chocs.
- ▶ Monter de manière visible des panneaux d'interdiction par rapport à la présence de sources inflammables dans la zone de protection (non fournis par nos soins).

4.2.2.2 Installation sur un toit terrasse


Respecter les consignes relatives aux équipements de protection individuelle [chap. 2.4.1].

Dans le cas d'un montage sur toit terrasse et en présence d'une conception de bâtiment légère (comme par ex. une maison à ossature bois) une transmission des bruits de structure est possible.

Implantation sur toit terrasse au niveau d'un emplacement dégagé


- ► Respecter la zone de protection ① délimitée [chap. 4.2.1].
- ► Respecter une distance minimale par rapport à l'arête du toit ou à la structure périphérique du toit.

- 1 Zone de protection
- 2 Arrête de toit
- 3 Structure périphérique du toit (ex. acrotère)

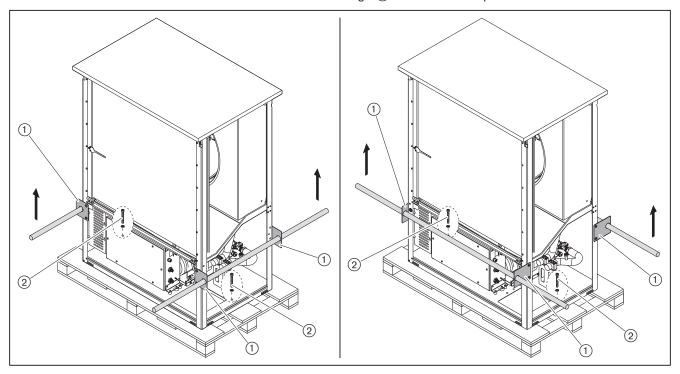
Implantation sur toit terrasse à proximité du bâtiment

- ► Respecter la zone de protection ① délimitée [chap. 4.2.1].
- ► Respecter une distance minimale par rapport à l'arête du toit ou à la structure périphérique du toit.

- 1 Zone de protection
- 2 Arrête de toit
- 3 Structure périphérique du toit (ex. acrotère)

4.2.3 Transport

Respecter le Droit du Travail en termes de réglementation liée au transport de charges [chap. 3.4.13].


Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Un transport qui ne serait pas effectué conformément aux prescriptions, peut conduire à des fuites de fluide frigorigène respectivement à une explosion.

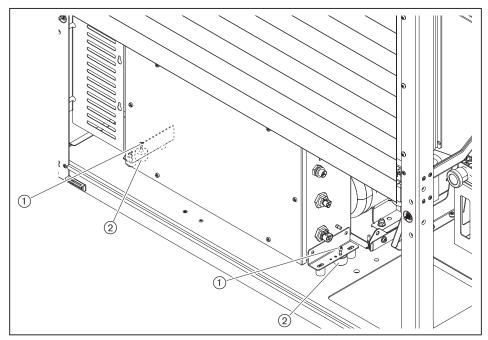
- ▶ Ne pas endommager le circuit frigorifique.
- Ne pas la basculer la pompe à chaleur à plus de 45°.
- ▶ Respecter la zone de protection [chap. 4.2.2].

Il n'est pas utile de déposer l'habillage supérieur.

- ► Retirer l'habillage [chap. 8.4].
- Procéder au montage des cornières destinées à la manutention ① sur les 4 côtés de l'appareil.
- ► Insérer des tubes ¾" (non fournis) dans les cornières.
- ► Retirer l'élément de blocage ② destiné au transport.

4.2.4 Installer la pompe à chaleur

Respecter scrupuleusement les conditions d'installation [chap. 4.1].


Respecter le plan de fondation [chap. 10.1].

Les condensats ne peuvent s'écouler correctement que si la pompe à chaleur est parfaitement de niveau.

- Poser la pompe à chaleur sur une fondation ou sur un socle de montage (accessoire).
- ► Procéder à la mise à niveau de la pompe à chaleur.
- ▶ Procéder au montage de la machine à l'aide d'un matériel de fixation adapté (comme par ex. des goujons d'ancrage) [chap. 3.4.12].

Dispositif de blocage pour le transport

► Extraire les vis ① du boîtier électronique, puis retirer le dispositif de blocage servant au transport ②.

5 Installation

5 Installation

Il convient de respecter les prescriptions locales liées à la protection incendie des réseaux de canalisation (comme par exemple en Allemagne la Directive LAR)

5.1 Prescriptions liées à la qualité de l'eau de chauffage

L'eau de chauffage doit répondre aux prescriptions de la VDI 2035 réglementation allemande ainsi qu'à l'ensemble des normes en vigueur au plan local.

- L'eau de remplissage et l'eau d'appoint doivent être de qualité alimentaire (incolore, claire, sans sédiments).
- L'eau de remplissage et l'eau d'appoint doivent être préfiltrées.
- Dans le cadre d'installations mettant en œuvre des composants perméables à l'oxygène, la pompe à chaleur ne doit être raccordée que par le biais d'un dispositif de séparation hydraulique.
- La valeur de pH doit être comprise dans la plage suivante :
 - 8,2 ... 10,0 (installations dépourvues de composants en alliage d'aluminium)
 - 8,2 ... 9,0 (installations avec des composants en alliage d'aluminium)
 En raison de l'auto-alcalinisation de l'eau de chauffage, la mesure de pH doit intervenir au plus tôt 10 semaines après la mise en service.
 - La valeur de pH doit le cas échéant être adaptée se référer pour ce faire aux prescriptions de la VDI 2035 (directive allemande) voire aux autres prescriptions en vigueur localement.
- C'est le volume total de l'eau de chauffage contenu dans l'installation qui détermine la dureté maximale totale [chap. 5.1.2].
 L'eau de remplissage et d'appoint doit le cas échéant être traitée se référer pour ce faire aux prescriptions de la VDI 2035 (directive allemande) voire aux autres prescriptions en vigueur localement.

5.1.1 Volume d'eau de chauffage de l'installation

En l'absence d'informations précises concernant le volume d'eau de chauffage de l'installation, les données suivantes peuvent être prises en considération.

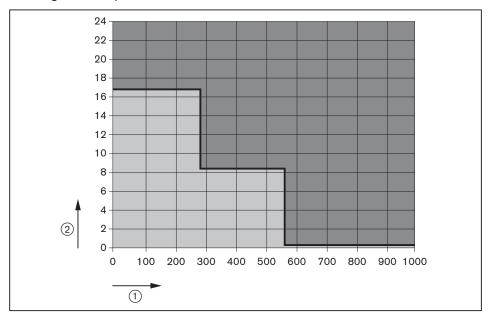
En présence d'un stock tampon, le volume de ce dernier doit être pris en compte.

Emetteurs	Volumes estimatifs de l'installation(1	
	35/28 °C	55/45 °C
Tubes et radiateurs acier	-	37 l/kW
Radiateurs fonte	_	28 l/kW
Radiateurs aciers à panneaux	-	15 l/kW
Centrale traitement d'air	-	12 l/kW
Convecteurs	_	10 l/kW
Plancher chauffant	25 l/kW	_

⁽¹ en liaison avec les besoins en chauffage du bâtiment

5.1.2 Dureté de l'eau

Le volume total de l'installation permet de déterminer la dureté maximale de l'eau de chauffage.


Lorsque la pompe à chaleur est séparée du réseau de distribution par un échangeur à plaques, Weishaupt préconise le remplissage de ladite pompe à chaleur avec de l'eau non traitée.

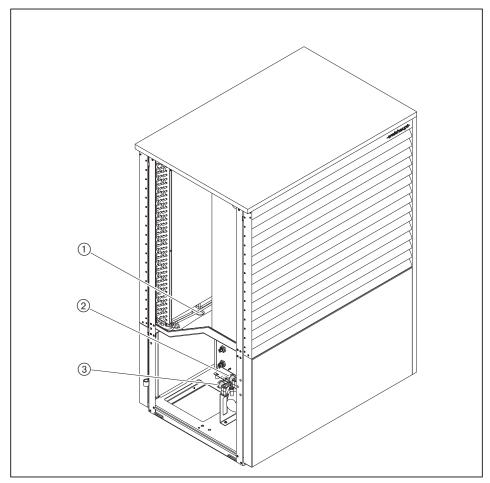
▶ Définir à l'aide du diagramme ci-dessous si un traitement de l'eau est nécessaire.

Si le point d'intersection se situe dans la plage

Traiter l'eau de remplissage et d'appoint, voir à cet effet les prescriptions de la VDI 2035.

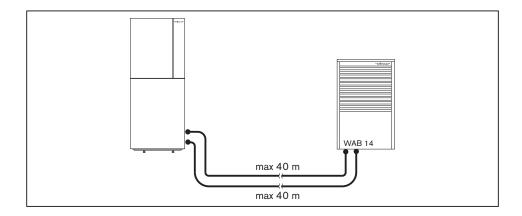
Si le point d'intersection se situe dans la plage _____, aucun traitement de l'eau de chauffage n'est requis.

- 1) Volume de l'installation [litres]
- ② Dureté totale en [°dH] (1°dH degré allemand = 1,785°f degré français)
- Traitement de l'eau de chauffage nécessaire.
- Pas de traitement de l'eau de chauffage nécessaire.


► Veiller à consigner systématiquement les volumes d'eau de remplissage et d'appoint ainsi que la qualité de l'eau de chauffage.

5.2 Raccordement hydraulique

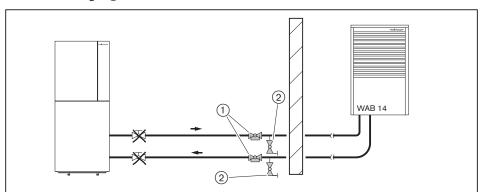
Risque d'explosion en cas de fuite de fluide frigorigène au niveau du purgeur La pompe à chaleur intègre du fluide frigorigène inflammable. En cas de fuite au niveau du circuit frigorifique de la pompe à chaleur, du fluide frigorigène peut s'infilter dans l'eau de chauffage et s'échapper du purgeur au sein du bâtiment. C'est pourquoi, Weishaupt préconise de n'installer que des purgeurs manuels à l'intérieure du bâtiment.


- ▶ S'assurer, de l'absence totale de source inflammable à proximité du purgeur.
- ► Si des purgeurs automatiques sont mis en oeuvre :
 - Fermer les purgeurs automatiques immédiatement après le processus de purge.
 - Sécuriser les purgeurs automatiques contre toute ouverture involontaire.
- Rincer l'installation de chauffage avec au moins une quantité d'eau correspondant au double du volume d'eau total de l'installation.
- ✓ Eliminer toutes les particules étrangères.
- ▶ Raccorder le départ et le retour (installer des vannes d'isolement).

- (1) Evacuation des condensats Ø 40 mm
- 2 Départ G 1"1/4
- (3) Retour G 1"1/4

Prescriptions d'installation des liaisons hydrauliques

Avant de procéder à la pose des conduites hydrauliques, penser à respecter les longueurs maximales préconisées.


Elévation de la pression lorsqu'une vanne d'isolement est fermée

Le préparateur multifonction peut être endommagé.

- ► Monter une vanne avec vidange comme organe d'isolement entre le préparateur multifonction et la pompe à chaleur.
- ✓ Une isolation inopportune est ainsi évitée.

Veiller lors de l'installation des conduites hydrauliques au sein du bâtiment à :

▶ Installer des vannes d'isolement ① au ras du mur intérieur assurant une possibilité de vidange ②.

Mise en eau

Dommages au niveau du générateur dus à une eau de remplissage inadaptée

La corrosion et la formation de dépôts peuvent endommager l'installation.

▶ Respecter les exigences de qualité de l'eau de chauffage et les prescriptions locales en vigueur [chap. 5.1].

Respecter la pression de service maximale [chap. 3.4.10].

- ► Ouvrir les vannes d'isolement.
- Procéder au remplissage progressif de l'installation de chauffage à l'aide du robinet correspondant, tout en tenant compte de la pression de l'installation.

Respecter les consignes relatives aux équipements de protection individuelle [chap. 2.4.1].

- ▶ Procéder au dégazage manuel de l'installation.
- ▶ Réaliser un contrôle d'étanchéité ainsi que de la pression de l'installation.

Afin que le processus de dégivrage dans la pompe à chaleur s'opère de manière complète, il est impératif qu'un volume minimum de 100 litres d'eau soit disponible dans les circuits de chauffage.

5.3 Raccordement condensats

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. En cas de fuite au niveau du circuit frigorifique, du fluide frigorigène peut s'infiltrer dans l'évacuation des condensats

- ▶ Ne pas orienter l'évacuation des condensats vers l'intérieur du bâtiment.
- Veiller à assurer sur site une évacuation des condensats conforme aux règles de l'art.

Risques d'étouffement en cas de fuite de fluide frigorigène

En cas de fuite au niveau du circuit frigorifique, du fluide frigorigène peut s'infiltrer dans l'évacuation des condensats. L'inhalation du fluide peut conduire à l'étouffement

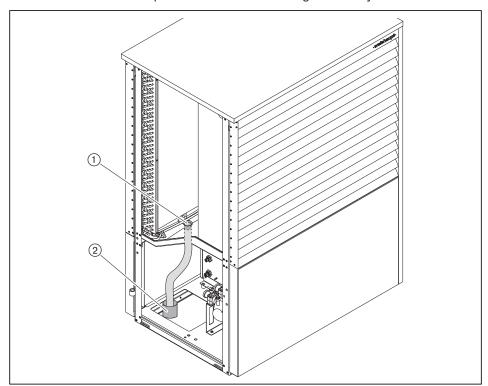
- ▶ Ne pas orienter l'évacuation des condensats vers l'intérieur du bâtiment.
- Veiller à assurer sur site une évacuation des condensats conforme aux règles de l'art.

Possibilité de dégradation du bâti, du sous-sol et de la pompe à chaleur par les condensats

Les condensats peuvent dégrader le bâti ainsi que le sous-sol. La pompe à chaleur peut être endommagée par les condensats s'ils devaient geler.

▶ Veiller à ce que l'évacuation des condensats s'opère sans risque de gel.

Raccorder le tuyau d'évacuation des condensats de telle sorte qu'il ne forme pas de coude (à effet de siphon) et que l'écoulement des condensats soit assuré.


Respecter le plan de fondation [chap. 10.1].

La pompe à chaleur peut générer une quantité importante de condensats :

WAB 14 : jusqu'à 55 litres par jour

Un tuyau d'évacuation des condensats \varnothing int. 40 mm est livré avec la pompe à chaleur.

- ▶ Raccorder le tuyau d'évacuation des condensats à l'aide des colliers sur la bride de raccordement ① du bac à condensats.
- ► Raccorder l'extrémité du tuyau d'évacuation des condensats ② à l'évacuation des eaux usées en adaptant le cas échéant la longueur du tuyau d'évacuation.

5.4 Raccordement électrique

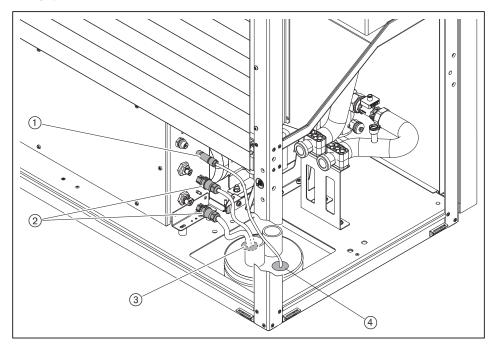
Danger de mort par électrocution

Les travaux sous tension peuvent conduire à des électrocutions.

- ▶ Avant de débuter les travaux de raccordement, mettre l'installation hors tension.
- ▶ Sécuriser l'installation contre tout réenclenchement intempestif.

Le raccordement électrique doit être réalisé par du personnel disposant des habilitations nécessaires. Il importe de tenir compte en outre de la réglementation spécifique en vigueur au plan local.

Dommages suite à une pose inadéquate des liaisons


La température des conduites ou un compresseur chaud, peuvent endommager les liaisons électrique.

▶ Poser les liaisons électriques de telle sorte qu'elles ne soient pas en contact avec des composants pouvant présenter des températures élevées.

3 câbles de liaison sont nécessaires pour le raccordement Modbus d'une part et l'alimentation électrique (accessoires) d'autre part.

Les câbles de raccordement destinés à l'alimentation électrique et le câble Modbus ne peuvent pas être juxtaposés.


- ▶ Procéder à la pose des câbles de liaison électrique de la pompe à chaleur et du compresseur ② dans le tube vide ③ et à leur raccordement.
- Procéder à la pose du câble Modbus ① dans le tube vide ④ et à son raccordement.

5.4.1 Schéma de raccordement

Respecter les consignes pour le raccordement électrique de la sonde [chap. 5.4].

Pompe à chaleur			Câble d'alimentation (accessoire)	- Description
Raccordement	N°	Fonction	Couleur	Raccordement
Modbus	1	GND	blanc	Régulateur de pompe à chaleur WAB : GND Préparateur multifonction WKS #5 : -
	2	_	vert	Régulateur de pompe à chaleur WAB : - Préparateur multifonction WKS #5 : B
	3	+	brun	Régulateur de pompe à chaleur WAB : + Préparateur multifonction WKS #5 : A
Alimentation - com-	4	L1	brun	[chap. 3.4.2]
mande	5	N	bleu	
Alimentation - tension	6	PE	vert / jaune	
Compresseur	7	L1	brun	[chap. 3.4.2]
	8	L2	noir	
	9	L3	gris	
	10	PE	vert / jaune	
	(1)	N	bleu	

6 Mise en service

6 Mise en service

Se reporter aux notices de montage et de mise en service suivantes :

- "Régulateur de pompes à chaleur WAB" (N° d'impression 83330204)
 - ou -
- Préparateur multifonction WKS 300/100 LE / Unit-E / Bloc / C #5 (N° d'impression 83329504)
 - ou –
- Préparateur multifonction WKS 300/100 LE / Unit-E / Bloc / D #5 (N° d'impression 83331304)

7 Mise hors service

7 Mise hors service

La mise hors service ne peut être réalisée que par du personnel qualifié.

Avant le début des travaux, il convient de vérifier que toutes les mesures de sécurité liées au circuit frigorifique ont été prises en considération [chap. 2.4.4].

Lors d'une interruption de fonctionnement :

- Mettre l'installation hors tension et la sécuriser contre tout réenclenchement intempestif.
- ▶ Vidanger totalement l'eau de l'installation en cas de risque de gel.

Lors de la mise hors service veiller de façon complémentaire à :

- ► Récupérer le fluide frigorigène.
- ▶ Retirer l'huile frigorigène du circuit frigorifique et des composants.
- Assurer l'élimination du fluide et de l'huile frigorigène conformément à la réglementation.
- Procéder à un marquage de la pompe à chaleur :
 - Pompe à chaleur hors service
 - Fluide frigorigène récupéré
 - Huile frigorigène récupérée
 - Date et signature de l'intervenant

8 Entretien

8.1 Consignes d'entretien

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Des travaux mal réalisés peuvent entraîner des fuites de fluide frigorigène et un risque d'explosion.

- ▶ Ne pas endommager le circuit frigorifique.
- ▶ N'effectuer des travaux que sur un équipement disposant d'une mise à la terre via un équilibrage des potentiels.
- ✓ Cela permet d'éviter les décharges électrostatiques.

Risque d'explosion dû à un condensateur non déchargé

La pompe à chaleur intègre du fluide frigorigène inflammable. Un arc électrique au niveau du condensateur, peut provoquer une explosion.

- ► Avant de débuter les travaux, attendre env. 5 minutes.
- ✓ La tension électrique chute.

Risques d'étouffement en cas de fuite de fluide frigorigène

Du fluide frigorigène s'amalgame au niveau du sol suite à une fuite.

L'inhalation du fluide peut conduire à l'étouffement. Le contact avec la peau peut entraîner des gelures.

▶ Ne pas endommager le circuit frigorifique.

Danger de mort par électrocution

Les travaux sous tension peuvent conduire à des électrocutions.

- ▶ Avant de débuter les travaux de raccordement, mettre l'installation hors tension.
- ► Sécuriser l'installation contre tout réenclenchement intempestif.

Risques de brûlures liés à des composants chauds

Le contact avec certains composants pouvant atteindre des températures élevées peut entraîner des brûlures.

- ► Ne pas toucher les composants.
- Laisser refroidir ces éléments avant de les toucher.

Risques de blessures sur des arrêtes vives

Les arrêtes vives au niveau de certains composants peuvent entraîner des blessures.

- ▶ Veiller à porter des gants de protection.
- Il convient d'être vigilent par rapport aux arrêtes vives présentes sur certains composants.

L'entretien ne peut être réalisé que par du personnel qualifié. La pompe à chaleur doit être entretenue une fois par an. Selon la configuration de l'installation, des contrôles complémentaires peuvent s'avérer nécessaires.

Weishaupt conseille la souscription d'un contrat d'entretien afin de garantir les travaux d'inspection et de maintenance nécessaires.

Il est important que l'utilisateur réalise au moins une fois par an, des contrôles resp. des nettoyages (ex. : suppression des végétaux) de sa pompe à chaleur.

Avant chaque entretien

- ► Avant de débuter les travaux d'entretien, informer l'utilisateur.
- Mettre la pompe à chaleur hors tension via le disjoncteur principal et la sécuriser contre tout réenclenchement intempestif.
- Contrôler l'absence d'éventuelles fuites de fluide frigorigène sur la pompe à chaleur avec un dispositif de détection de fuite de gaz approprié.
- ► Retirer l'habillage [chap. 8.4].

Entretien

Réaliser la procédure d'entretien comme prescrit par la carte d'inspection tout en complétant cette dernière (Notice N° 83757904).

Après chaque entretien

Dans le cadre du contrôle d'étanchéité du circuit frigorifique, il convient de respecter scrupuleusement les dispositions en vigueur au plan local/national.

- Réaliser un contrôle visuel :
 - de la conformité des conduites de liaison
 - de l'état irréprochable des conduites de fluide frigorigène et de leur isolation par rapport à une éventuelle dégradation
 - de la présence de l'isolation sur les conduites de fluide frigorigène
 - de l'état des liaisons électriques
 - des composants dans leur ensemble par rapport à d'éventuelles corrosions
- Remplacer le cas échéant les câbles de liaison électrique et les composants endommagés.
- Remplacer le cas échéant les conduites de fluide frigorigène/l'isolation endommagées.
- ► Réaliser un contrôle de pression, après réparation du circuit frigorifique.
- ► Réaliser un test d'étanchéité à l'aide d'un détecteur de fuite.
- Réaliser un contrôle de fonctionnement.
- Consigner les travaux réalisés sur le rapport d'intervention et sur la carte d'inspection.
- ► Monter l'habillage.

8.2 Composants

En complément du protocole d'entretien repris sur la carte d'inspection, les composants suivants sont à contrôler au regard de leur prescription de longévité.

Les composants soumis à une usure plus rapide ou ayant une durée de vie plus courte ou encore dont la préconisation de durée de vie arrive à échéance avant le prochain entretien, doivent être remplacés à titre préventif.

- ▶ Vérifier les prescriptions de longévité des composants.
- Remplacer le cas échéant les composants.

Composants	Prescriptions de longévité
Pressostat HP	20 ans
Pressostat basse pression	20 ans

8.3 Nettoyage de la pompe à chaleur

Respecter les consignes d'entretien [chap. 8.1].

La pompe à chaleur doit être nettoyée au moins une fois par an, de préférence avant la période de chauffe.

Risque d'explosion en cas de fuite de fluide frigorigène

La pompe à chaleur intègre du fluide frigorigène inflammable. Des travaux mal réalisés peuvent entraîner des fuites de fluide frigorigène et un risque d'explosion.

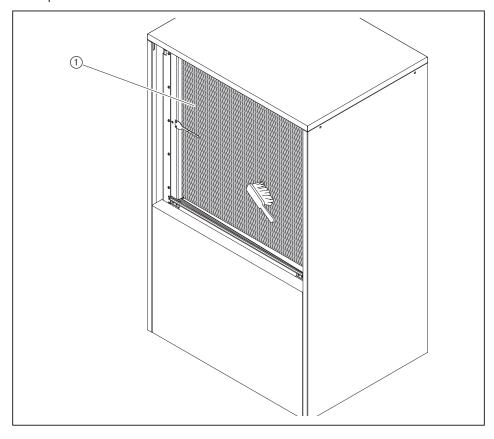
▶ Ne pas endommager le circuit frigorifique.

Risques de blessures sur des arrêtes vives

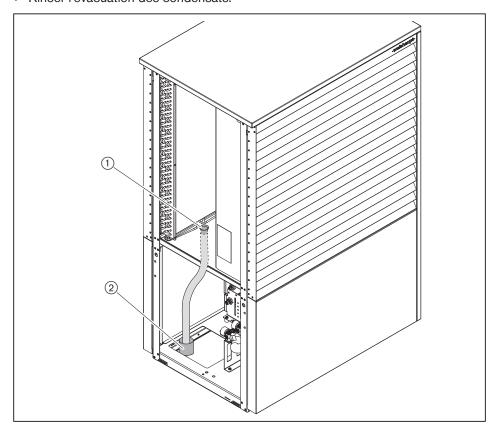
Les arrêtes vives au niveau de l'évaporateur peuvent entraîner des blessures.

 Il est conseillé de porter des gants de protection lors du nettoyage de l'évaporateur.

Dégradation de la pompe à chaleur suite à un nettoyage inadéquat


Les projections d'eau peuvent endommager les composants électriques. Les éléments coupants peuvent conduire à des dommages sur l'évaporateur et donc sur le circuit frigorifique.

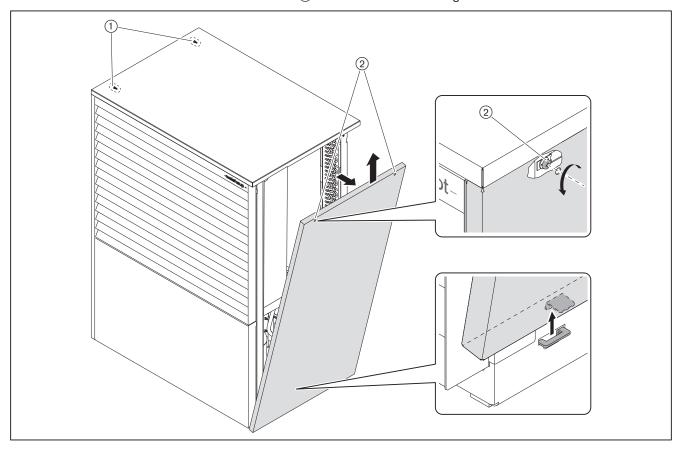
- ► L'habillage ne doit être nettoyé qu'à l'aide d'un chiffon humide.
- L'évaporateur ne doit être nettoyé qu'avec un balai souple.


Respecter les consignes relatives aux équipements de protection individuelle [chap. 2.4.1].

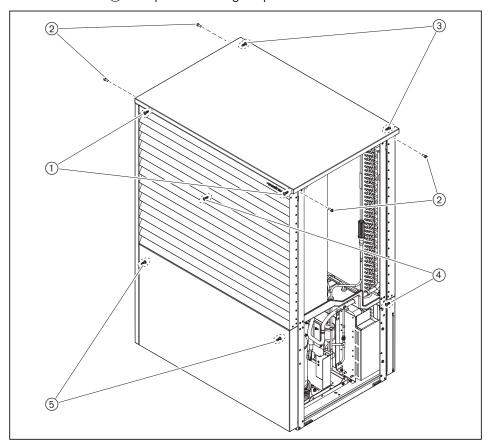
► Retirer les végétaux et dépoussiérer l'évaporateur ① à l'aide d'une brosse souple.

Contrôler l'évacuation des condensats

- ► Contrôler l'évacuation des condensats ① et ②.
- ► Contrôler le bac à condensats.
- ► Procéder si nécessaire à son nettoyage.
- ✓ Les condensats s'écoulent sans difficulté.
- ► Rincer l'évacuation des condensats.



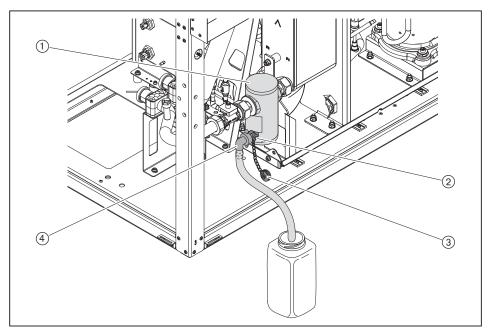
8.4 Remplacer l'habillage


Respecter les consignes d'entretien [chap. 8.1].

Dépose de l'habillage

- ► Contrôler l'absence d'éventuelles fuites de fluide frigorigène sur la pompe à chaleur avec un dispositif de détection de fuite de gaz approprié.
- ▶ Desserrer les vis ② (tournevis cruciforme).
- √ L'habillage latéral bascule vers l'avant.
- ▶ Décrocher la face latérale droite dans un mouvement vers le haut.
- ► Extraire les vis ① et retirer la face latérale gauche.

- ► Extraire les vis ④ et retirer l'habillage de l'évaporateur.
- ► Extraire les vis ⑤ et retirer l'habillage du ventilateur.
- ► Extraire les vis ① et retirer la grille de protection du ventilateur.
- ► Extraire les vis ③ et retirer la grille de protection de l'évaporateur.
- ► Extraire les vis ② et déposer l'habillage supérieur.


Montage de l'habillage

▶ Procéder au remontage de l'habillage dans le sens inverse de la dépose et vérifier le bon positionnement de l'habillage notamment dans le système d'accrochage situé en partie basse du cadre.

8.5 Rinçage du dispositif de désembouage

Respecter les consignes d'entretien [chap. 8.1].

- ► Préparer un réservoir de récupération.
- ► Retirer le capuchon ③ du désemboueur ①.
- ► Fixer la pièce coudée ④ (ainsi que le tuyau d'évacuation) sur le désemboueur.
- Ouvrir la vanne ② à l'aide du capuchon, puis procéder au rinçage du désemboueur.
- ▶ Refaire un appoint en eau via le dispositif de rinçage ou le cas échéant via le disconnecteur.

8.6 Dégazage du circuit de chauffage

Respecter les consignes relatives aux équipements de protection individuelle [chap. 2.4.1].

- ▶ Procéder au dégazage manuel de l'installation.
- ► Réaliser un contrôle d'étanchéité ainsi que de la pression de l'installation.

9 Caractéristiques techniques

9 Caractéristiques techniques

9.1 Caractéristiques des sondes

Sonde de départ pompe à chaleur (B4) Sonde de retour (B9) Sonde de carter d'huile (T1) Sonde d'aspiration d'air (T2)

Sonde échangeur en sortie d'évaporateur (T3)

Sonde d'aspiration entrée compresseur (T4)

Sonde fluide frigorigène amont détendeur (T5) Sonde de température gaz chaud (DT)

			NTC	10 kΩ			
°C	Ω	°C	Ω	°C	Ω	°C	Ω
-40	401 860	-4	41 681	32	7 379	68	1 883
-39	373 810	-3	39 477	33	7 074	69	1 820
-38	347 933	-2	37 405	34	6 783	70	1 760
-37	324 043	-1	35 455	35	6 506	71	1 702
-36	301 975	0	33 621	36	6 241	72	1 646
-35	281 577	1	31 893	37	5 989	73	1 593
-34	262 710	2	30 266	38	5 749	74	1 541
-33	245 249	3	28 733	39	5 520	75	1 492
-32	229 079	4	27 288	40	5 301	76	1 444
-31	214 096	5	25 925	41	5 093	77	1 398
-30	200 204	6	24 639	42	4 894	78	1 354
-29	187 316	7	23 425	43	4 703	79	1 311
-28	175 354	8	22 279	44	4 522	80	1 270
-27	164 243	9	21 197	45	4 348	81	1 231
-26	153 918	10	20 175	46	4 182	82	1 193
-25	144 317	11	19 208	47	4 024	83	1 156
-24	135 385	12	18 294	48	3 872	84	1 121
-23	127 071	13	17 430	49	3 727	85	1 087
-22	119 328	14	16 612	50	3 588	86	1 054
-21	112 112	15	15 837	51	3 455	87	1 022
-20	105 385	16	15 104	52	3 328	88	992
-19	99 109	17	14 409	53	3 207	89	962
-18	93 252	18	13 751	54	3 090	90	934
-17	87 783	19	13 127	55	2 978	91	906
-16	82 674	20	12 535	56	2 871	92	880
-15	77 898	21	11 974	57	2 769	93	854
-14	73 432	22	11 441	58	2 671	94	829
-13	69 253	23	10 936	59	2 577	95	805
-12	65 341	24	10 456	60	2 486	96	782
-11	61 678	25	10 000	61	2 399	97	760
-10	58 246	26	9 567	62	2 316	98	738
-9	55 028	27	9 155	63	2 237	99	718
-8	52 011	28	8 764	64	2 160	100	698
-7	49 179	29	8 391	65	2 086	101	678
-6	46 522	30	8 037	66	2 016	102	659
-5	44 026	31	7 700	67	1 948	103	641

9 Caractéristiques techniques

Capteur de pression échangeur

Basse pression	(P1)	Haute pression	(P2)
mA	bar	mA	bar
4	0,00	4	0,00
6	1,25	6	3,75
8	2,50	8	7,50
10	3,75	10	11,25
12	5,00	12	15,00
14	6,25	14	18,75
16	7,50	16	22,50
18	8,75	18	26,25
20	10,00	20	30,00

9.2 Tableau de conversion unité de pression

Bar			Pascal	
	Pa	hPa	kPa	MPa
0,1 mbar	10	0,1	0,01	0,00001
1 mbar	100	1	0,1	0,0001
10 mbar	1 000	10	1	0,001
100 mbar	10 000	100	10	0,01
1 bar	100 000	1 000	100	0,1
10 bar	1 000 000	10 000	1 000	1

9 Caractéristiques techniques

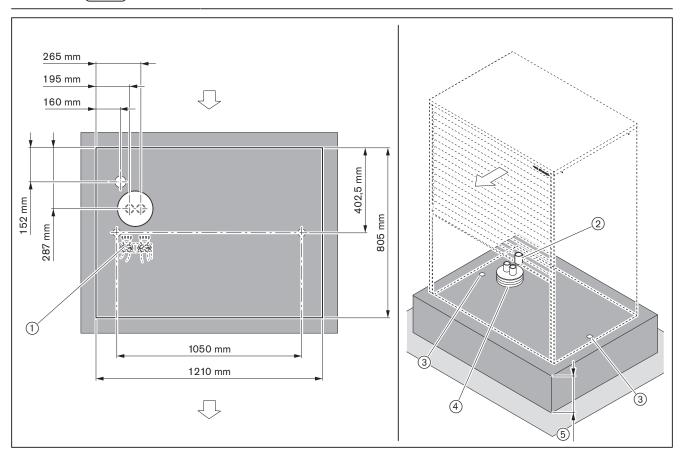
9.3 Appareils sous pression

Les appareils sous pression respectent les exigences de base de la Directive européenne des équipements sous pression 2014/68/EU conformément à la méthode d'évaluation décrite ci-après :

Туре	Appareils sous pression	Méthode d'évaluation		
		Catégorie	Module	
WAB 14-B-RMD-A	Pressostat HP	IV	B+D	
	Pressostat basse pression	IV	B+D	
	Collecteur de liquide	II	D1	
	Compresseur	I	Α	
	Bouteille anti-coup de liquide	II	D1	

10 Elaboration du projet

10 Elaboration du projet


10.1 Plan de fondation

Le raccordement hydraulique de la pompe à chaleur au bâtiment doit être parfaitement étanche au gaz, voir à cet effet la notice correspondante intitulée "Raccordement pompe à chaleur au bâtiment" (N° d'impression 83330504).

Respecter les prescriptions d'installation relatives aux liaisons hydrauliques (conduites isolées) [chap. 5.2].

Weishaupt préconise la mise en oeuvre d'un socle en béton dépassant au minium de 50 mm de part et d'autre les bords extérieurs de la pompe à chaleur.

Socle en béton, fondation pleine

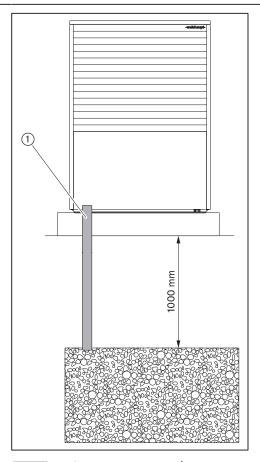
Sens d'écoulement de l'air

1) Raccordements hydrauliques départ et retour

(2) Évacuation des condensats

3 Fixation de la pompe à chaleur sur la fondation

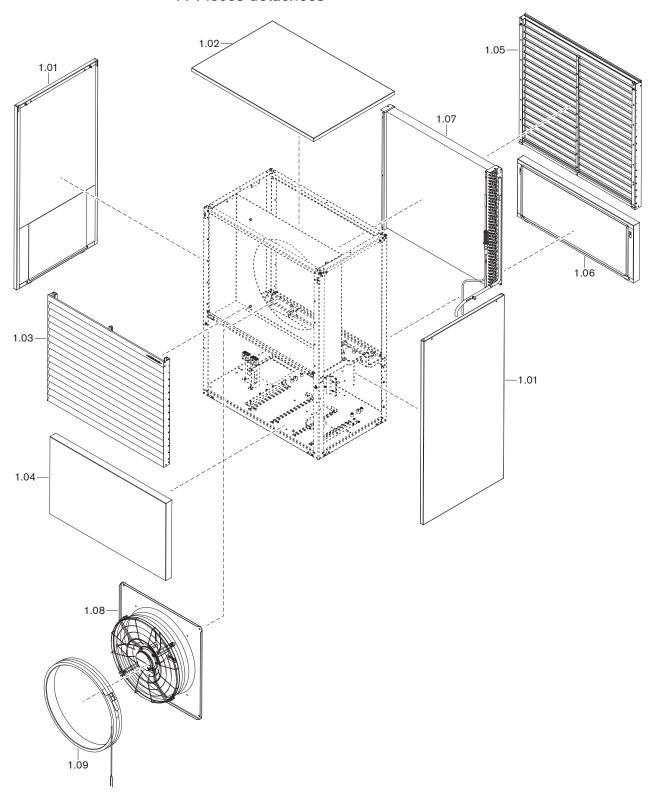
(4) Conduites hydrauliques (conduites isolées)


(5) Mini 150 mm au-dessus de la surface du sol

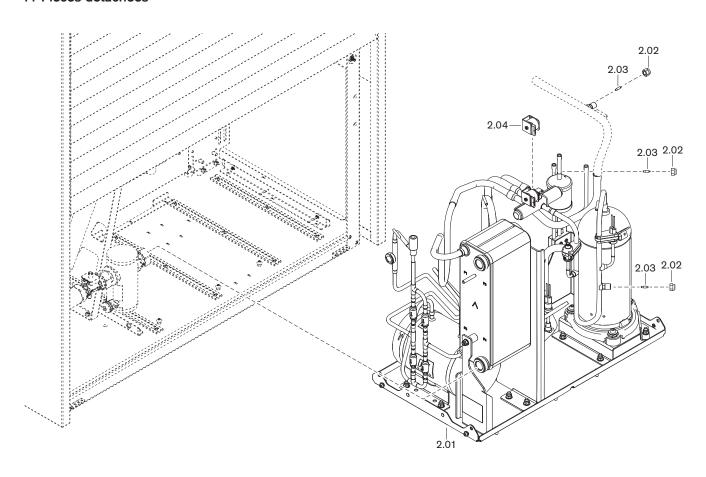
10 Elaboration du projet

Évacuation des condensats

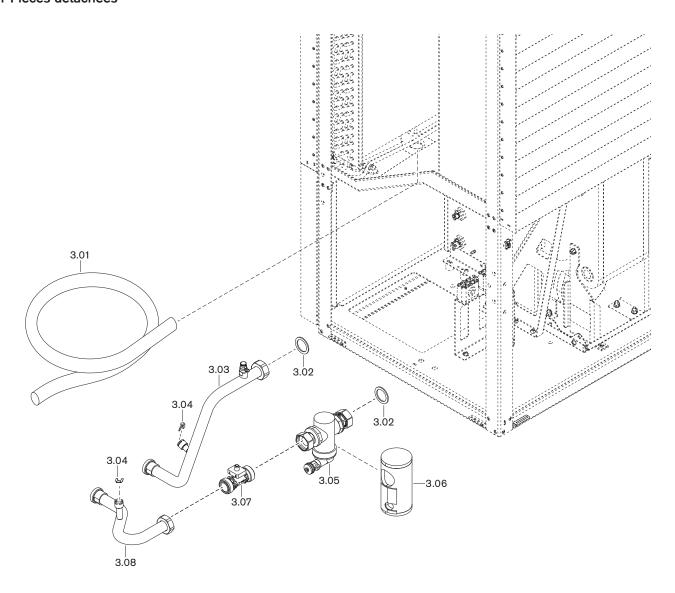
Weishaupt préconise d'évacuer les condensats via les eaux usées.

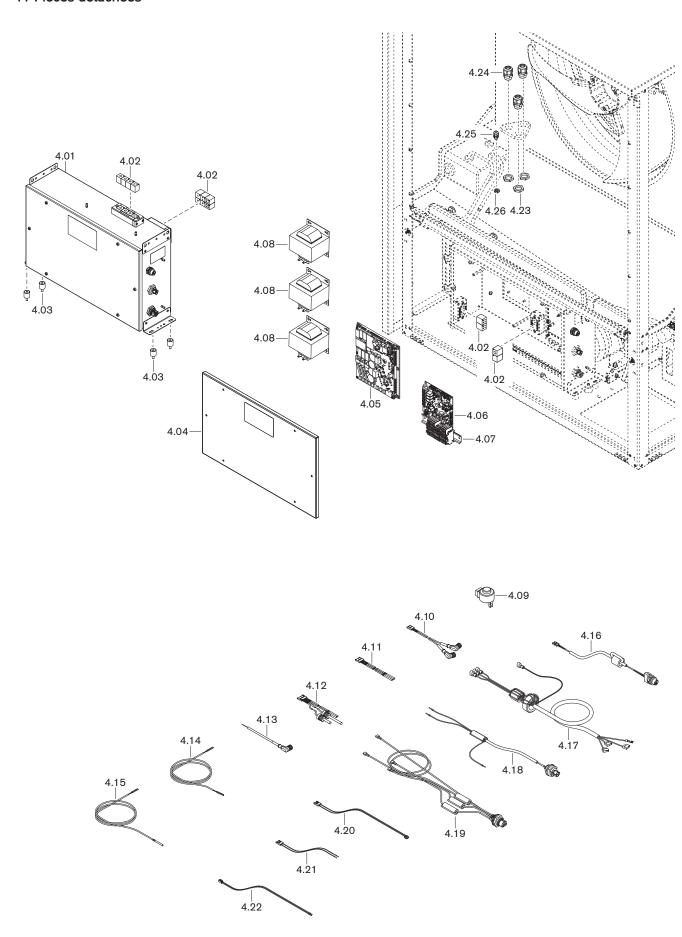


Couche de gravier (zone de drainage)


1 Tube d'évacuation des condensats DN 100

Lorsque les condensats peuvent être évacués via les eaux pluviales :


- ► Il convient d'installer un siphon au niveau de l'évacuation des condensats, en veillant pour ce faire :
 - à installer le siphon en dehors de la pompe à chaleur à une profondeur hors gel
 - à conserver un accès au siphon permettant son nettoyage


Pos.	Désignation	N° de réf.
1.01	Habillage latéral	525 501 02 342
1.02	Habillage supérieur	525 501 01 732
1.03	Grille protection côté refoulement	525 501 02 312
1.04	Habillage côté refoulement	525 501 02 332
1.05	Grille de protection complète	525 501 01 722
1.06	Habillage côté aspiration	525 501 02 322
1.07	Evaporateur	525 501 02 302
1.08	Ventilateur axial avec traçage chauffant	525 501 02 812
1.09	Traçage chauffant couronne de ventilateur	525 501 02 142

Pos.	Désignation	N° de réf.
2.01	Composant circuit frigorifique	
	- Compresseur avec isolation	525 501 02 352
	- Pied caoutchouc compresseur	525 501 02 832
	- Condenseur avec isolation	525 501 02 372
	- Vanne 4 voies avec isolation	525 501 02 402
	- Pressostat HP 32/24 bar	525 501 01 942
	- Capteur haute pression PT5N-30P-FLR	525 501 01 952
	 Pressostat basse pression PS4-W5-ATEX 	
	0,2/1,4 bar	525 501 02 202
	- Capteur basse pression PT5N-10P-FLR	525 501 01 882
	- Clapets anti-retour avec isolation	525 501 02 432
	- Conduite injection 3/8"	525 501 02 462
	- Isolation Cool-Plate	525 501 01 452
	Isolation au mètre :	
	- Tube isolant 3/8" pour conduites 2 m	525 501 01 572
	- Tube isolant 1/2" pour conduites 2 m	525 501 01 582
	- Tube isolant 5/8" pour conduites 2 m	525 501 02 112
	- Tube isolant 3/4" pour conduites 2 m	525 501 02 122
	- Bande isolante Armaflex 25 mm /15 m	525 508 02 797
2.02	Contre-écrou 7/16" avec capuchon isolant	515 508 31 392
	- Capuchon isolant	525 501 01 112
2.03	Set vannes Schrader	525 501 01 102
2.04	Bobine vanne 4 voies	525 501 01 192

Pos.	Désignation	N° de réf.
3.01	Tuyau évac. condensats DN40 1200 mm	525 508 02 197
3.02	Joint 28 x 38 x 2	482 101 30 437
3.03	Conduite départ	525 501 02 512
3.04	Plaque de maintien sonde	511 502 02 247
3.05	Désemboueur avec isolation	525 501 01 992
	- Raccord G1"1/4cécrou x G1"1/4fil.ext.	525 514 02 052
3.06	Isolation pour désemboueur	525 514 02 062
3.07	Débitmètre VVX 25 + joints toriques	525 501 01 982
3.08	Conduite retour	525 501 02 502

Pos.	Désignation	N° de réf.
4.01	Boîtier électronique complet	525 501 02 492
4.02	Passage de câbles	
	- SPP 0 B	525 501 01 322
	– SPP 3 B	525 501 01 392
	- SPP 5 B	525 501 01 422
	– SPP 10 B	525 501 01 312
	– SPP 2 x 3 B	525 501 01 412
	– SPP 4 x 3 B	525 501 01 402
4.03	Tampon caoutchouc D20 x H20	525 508 02 337
4.04	Boîtier électronique - capot sup.	525 501 01 472
4.05	Inverter	525 501 01 482
4.06	Platine SEC-Mono	525 501 01 242
4.07	Bornier boîtier de raccordement	525 501 02 472
4.08	Bobine 8A 5,5 kW 3 Ph	511 504 44 682
4.09	Bobine détendeur	515 514 31 577
4.10	Câble capteurs de pression P1/P2	525 501 01 372
4.11	Kit sonde T1-T3	525 501 01 692
4.12	Kit sonde T4-T7	525 501 01 702
4.13	Câble liaison débitmètre	525 501 02 132
4.14	Câble bobine vanne 4 voies	525 501 01 432
4.15	Sonde DLT Drive complète NTC 10 K	525 501 02 822
4.16	Câble Modbus circuit frigorifique	525 501 02 162
4.17	Câble de puissance compresseur	525 501 01 682
4.18	Câble alimentation SEC	525 501 01 252
4.19	Câble de puissance Drive	525 501 02 482
4.20	Câble Modbus EV3	525 501 02 192
4.21	Câble SEC PWM 2	525 501 01 272
4.22	Câble pressostat Inverter	525 501 02 182
4.23	Ecrou six pans M25 x 1,5 EN50262	730 753
4.24	Raccord M25 x 1,5 IP68 EN50262	730 603
4.25	Raccord M12 x 1,5 IP68 EN50262	730 625
4.26	Ecrou six pans M12 x 1,5 EN50262	730 750

13 Index alphabétique

A		F		
Alimentation électrique	17	Fixation	2	4
Appareils sous pression		Fluide frigorigène		
Arrêt de l'installation		Fluide frigorigène inflammable		
		Foire exposition - Présentation produit		
В		Fondation		
	- 4	Fuite de fluide frigorigène		
Bar	54	Fusible		
С		G		
Capot supérieur	34			
Caractéristiques électriques		Garantie		
Carte d'inspection		Goujons d'ancrage		
Charge en fluide frigorigène		Grille de protection	5	1
Coefficient de performance				
Composants		Н		
Compresseur		Habillage	34.5	'n
Condensats		Hauteur d'installation		
Condenseur		Humidité		
Conditions environnantes				Ŭ
Contrat d'entretien		1		
COP		•		
Cote		Indice de protection		
Courbes caractéristiques		Installation		
2.	L, 20	Interruption de fonctionnement	4	.5
D		L		
Débit	21	Lamelles	5	: 1
Débit volumétrique		Lieu d'installation		
Débit volumétrique maximal		Longévité		
Débit volumétrique minimal	18	Longevice		J
Débitmètre		М		
Décharges électrostatiques	10			
Départ24		Marquages liés à la sécurité		
Désemboueur		mbar		
Détendeur		Mesures de sécurité		
Directive neige et vent		Mise au rebut		
Directive réseaux de canalisation		Mise en eau		
Disjoncteur de protection à courant de défaut		Mise en garde		
Dispositif de blocage pour le transport		Mise hors service		
Dispositif de séparation hydraulique		Montage	2	4
Données de certification				
Dureté de l'eau		N		
Dureté totale	37	Nettoyage	4	8
_		Niveau de puissance sonore		
E		Niveau sonore		
Eau de chauffage 2	1, 36	Normes	1	7
Eau de chauffage - débit volumétrique	18	Numéro de fabrication	1	2
Eau de chauffage - Température départ	18	Numéro de série	1	2
Eau de rafraîchissement - Température départ	20			
Échangeur à double paroi	16	0		
EER	20	Odeur de gaz		Ω
Émissions	18	Oueui de yaz		J
Entretien		D		
EPI		Р		
Equipement en exposition		Pa	5	4
Équipements de protection individuelle		Pascal		
Équipements de sécurité		PED		
Équivalent CO2		Pertes de charge		
Évacuation des condensats 24, 38		Pièces détachées		
Evaporateur	13	Plage de fonctionnement en chauffage	1	9

13 Index alphabétique

Plage de fonctionnement en rafraîchissement	
Plage de puissance	
Plaque signalétique	
Poids	
Poids à vide	
Potentiel de réchauffement climatique	
Potentiel de réchauffement global Prescriptions de la VDI 2035	
Prescriptions de la VDI 2035	
Pression de service	
Pressostat basse pression	
Pressostat HP	
PRG (GWP)	
Protection contre les décharges électrostatiques	10
Protection individuelle	
Puissance	
Puissance de rafraîchissement	
Puissance thermique	
Purge	
Purgeurs à l'intérieur du bâtiment	38
_	
a	
Qualité d'eau	37
R	
Raccordement - Schéma électrique	43
Raccordement électrique	
Raccordement en eau	
Raccordement hydraulique	
Responsabilite	ິ
Responsabilité	
Retour24,	
Retour	38
Retour	38 43
Retour	38 43 56
Retour	38 43 56 13
Retour 24, S Schéma de raccordement Socle en béton Sondes 11,	38 43 56 13 18
Retour	38 43 56 13 18
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11,	38 43 56 13 18
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11,	43 56 13 18
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole T Tableau de conversion 24,	38 43 56 13 18 . 7
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole T Tableau de conversion Température	38 43 56 13 18 . 7
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 1 T Tableau de conversion Température 18,	38 43 56 13 18 . 7 54 18 20
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 17 Tableau de conversion Température 18, Temps d'arrêt 18,	38 43 56 13 18 . 7 54 18 20 45
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau 18,	38 43 56 13 18 . 7 54 18 20 45 17
Retour	38 43 56 13 18 7 54 18 20 45 17 37
Retour 24, S Schéma de raccordement	38 43 56 13 18 7 54 18 20 45 17 37 34
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type 11, 18,	38 43 56 13 18 7 54 18 20 45 17 37 34 12
Retour 24, S Schéma de raccordement	38 43 56 13 18 7 54 18 20 45 17 37 34 12
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type 11, 18,	38 43 56 13 18 7 54 18 20 45 17 37 34 12
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type 11, 18,	38 43 56 13 18 7 54 18 20 45 17 37 34 12
Retour 24, S Schéma de raccordement Socle en béton Sondes Stockage 11, Symbole T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type Typologie Typologie	38 43 56 13 18 . 7 54 18 20 45 17 37 34 12 12
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, Symbole 18, T Tableau de conversion Température départ 18, Temps d'arrêt 18, Temps d'arrêt 18, Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type 11, 18, Type 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	38 43 56 13 18 . 7 54 18 20 45 17 37 34 12 12
Retour 24, S Schéma de raccordement Socle en béton Sondes Stockage 11, Symbole T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type Typologie Typologie	38 43 56 13 18 . 7 54 18 20 45 17 37 34 12 12
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type Typologie U Unité de pression V	38 43 56 13 18 . 7 54 12 12 54
Retour 24, S Schéma de raccordement Socle en béton Sondes Stockage 11, Symbole T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type Typologie U Unité de pression V Valeur de pH	38 43 56 13 18 . 7 54 12 12 54 36
Retour 24, S Schéma de raccordement Socle en béton Sondes 11, Symbole 11, T Tableau de conversion Température départ 18, Temps d'arrêt Tension réseau Traitement de l'eau de chauffage Transport 11, 18, Type Typologie U Unité de pression V	38 43 56 13 18 . 7 54 12 12 54 36 18

Volume d'eau		39
Volume d'eau de chauffage de l'installation	36,	37
Volume d'eau de remplissage		36
Vue d'ensemble	14,	15

-weishaupt-

Weishaupt SAS · 68000 Colmar

Weishaupt s.a. · Boulevard Paepsem 7, B-1070 Bruxelles

Max Weishaupt SE · 88475 Schwendi

Weishaupt proche de chez vous ? Adresses, coordonnées téléphoniques, etc. disponibles sur le site www.weishaupt.fr ou www.weishaupt.be

Sous réserve de toute modification. Reproduction interdite.